Modern finite-size criticality: Dirichlet and Neumann boundary conditions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical Casimir effect with Dirichlet and Neumann boundary conditions

We derive the radiation pressure force on a non-relativistic moving plate in 1+1 dimensions. We assume that a massless scalar field satisfies either Dirichlet or Neumann boundary conditions (BC) at the instantaneous position of the plate. We show that when the state of the field is invariant under time translations, the results derived for Dirichlet and Neumann BC are equal. We discuss the forc...

متن کامل

Curved planar quantum wires with Dirichlet and Neumann boundary conditions

The spectral properties of curved quantum wires with Dirichlet boundary condition were widely investigated (e.g. [1], [2], [3]). It was shown that any small curvature of the tube in dimensions 2 and 3 produces at least one positive eigenvalue below the essential spectrum threshold. The problem of the existence of such eigenvalues in the straight quantum waveguides with a combination of Dirichle...

متن کامل

Dirichlet-to-neumann Boundary Conditions for Multiple Scattering Problems

A Dirichlet-to-Neumann (DtN) condition is derived for the numerical solution of time-harmonic multiple scattering problems, where the scatterer consists of several disjoint components. It is obtained by combining contributions from multiple purely outgoing wave fields. The DtN condition yields an exact nonreflecting boundary condition for the situation, where the computational domain and its ex...

متن کامل

A structurally damped plate equation with Dirichlet-Neumann boundary conditions

We investigate sectoriality and maximal regularity in L-LSobolev spaces for the structurally damped plate equation with DirichletNeumann (clamped) boundary conditions. We obtain unique solutions with optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in bounded domains of class C. It turns out that the first-order system related to the scalar equation on...

متن کامل

Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions

A rigorous convergence theory for Galerkin methods for a model Helmholtz problem in Rd, d ∈ {1, 2, 3} is presented. General conditions on the approximation properties of the approximation space are stated that ensure quasi-optimality of the method. As an application of the general theory, a full error analysis of the classical hp-version of the finite element method (hp-FEM) is presented for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal Plus

سال: 2019

ISSN: 2190-5444

DOI: 10.1140/epjp/i2019-12347-2