Modern finite-size criticality: Dirichlet and Neumann boundary conditions
نویسندگان
چکیده
منابع مشابه
Dynamical Casimir effect with Dirichlet and Neumann boundary conditions
We derive the radiation pressure force on a non-relativistic moving plate in 1+1 dimensions. We assume that a massless scalar field satisfies either Dirichlet or Neumann boundary conditions (BC) at the instantaneous position of the plate. We show that when the state of the field is invariant under time translations, the results derived for Dirichlet and Neumann BC are equal. We discuss the forc...
متن کاملCurved planar quantum wires with Dirichlet and Neumann boundary conditions
The spectral properties of curved quantum wires with Dirichlet boundary condition were widely investigated (e.g. [1], [2], [3]). It was shown that any small curvature of the tube in dimensions 2 and 3 produces at least one positive eigenvalue below the essential spectrum threshold. The problem of the existence of such eigenvalues in the straight quantum waveguides with a combination of Dirichle...
متن کاملDirichlet-to-neumann Boundary Conditions for Multiple Scattering Problems
A Dirichlet-to-Neumann (DtN) condition is derived for the numerical solution of time-harmonic multiple scattering problems, where the scatterer consists of several disjoint components. It is obtained by combining contributions from multiple purely outgoing wave fields. The DtN condition yields an exact nonreflecting boundary condition for the situation, where the computational domain and its ex...
متن کاملA structurally damped plate equation with Dirichlet-Neumann boundary conditions
We investigate sectoriality and maximal regularity in L-LSobolev spaces for the structurally damped plate equation with DirichletNeumann (clamped) boundary conditions. We obtain unique solutions with optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in bounded domains of class C. It turns out that the first-order system related to the scalar equation on...
متن کاملConvergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions
A rigorous convergence theory for Galerkin methods for a model Helmholtz problem in Rd, d ∈ {1, 2, 3} is presented. General conditions on the approximation properties of the approximation space are stated that ensure quasi-optimality of the method. As an application of the general theory, a full error analysis of the classical hp-version of the finite element method (hp-FEM) is presented for th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The European Physical Journal Plus
سال: 2019
ISSN: 2190-5444
DOI: 10.1140/epjp/i2019-12347-2